H. Coleman

Helictites

Journal of Australasian Speleological Research

VOLUME 32 (2) 1994
HELICTITE
Journal of Australasian Cave Research
ISSN: 0017-9973

Helictite was founded by Edward A. Lane and Aola M. Richards in 1962. It is intended to be wide ranging in scope from the scientific study of caves and their contents, to the history of caves and cave areas and the technical aspects of cave study and exploration. The territory covered is Australasia - Australia, New Zealand, the near Pacific Islands, Papua New Guinea and surrounding areas, Indonesia and Borneo.

In 1974 the Speleological Research Council Limited agreed to support the Journal with financial assistance and in 1976 took over full responsibility for its production.

The Board of Management

Foundation Editors
Edward A. Lane Aola M. Richards

Editors
Guy C. Cox Julia M. James Alan Warld Andrew Pavey

Business management
David Martin

Production Management
Bruce R. Welch

The Speleological Research Council Limited, the publisher and owner of Helictite, is a non-profit limited liability company incorporated in May 1964.

The aims of the Speleological Research Council Limited are:

- To organise and promote the exploration and charting of caves and cave systems.
- To promote, support and assist in the scientific investigation of caves and to foster speleology as a science and a sport.
- The promotion of speleology and speleological societies and to assist with grants of money and otherwise.

Other publications by SRC Ltd:

 -a detailed history and description.
 -report of the 1973 Niugini Speleological Research Expedition to the Muller Range.
 -a detailed reference list.
 -a detailed description.
 -report of the 1978 speleological expedition to the Atea Kananda.
 -vertical caving equipment and techniques 1994.

Speleological Research Council Limited
A.C.N. 000 456 42
Helictite
Journal of Australasian Speleological Research

Volume 32 (2) 1994

Contents

Siluro-Devonian Bungonia Group, Southern Highlands, NSW 25

......................... J.A. Bauer

Cavernicolous leeches in Papua New Guinea 35

.............. Virginia M. van der Lande

Cover: Helictites, Shawl Cave, Wombeyan, NSW

Helictite, Volume 32, 1994 consists of two issues. Price per volume Aust. $20.00 post paid. "Helictite" is printed and published by the Speleological Research Council Ltd. Except for abstracting and review, the contents may not be reproduced without permission of the Editors. All correspondence to: PO Box 183 Broadway, NSW 2007
Siluro-Devonian Bungonia Group,
Southern Highlands, NSW

J.A. Bauer

Abstract

The Bungonia Group is a sequence of Late Silurian-Early Devonian biostratal limestone, sandstone and shale constituting marine fill of the Wollondilly Basin, an extensional structure initiated during the Mid-Silurian. The Bungonia Limestone (Carne & Jones, 1919) is elevated to Group status based on detailed mapping and analysis of the facies and faunal assemblages. The following succession of conformable formations and members is formalised: Lockdown Limestone (lowest); Cardinal View Shale; Frome Hill Formation consisting of the Folly Point Limestone Member, Efflux Siltstone Member and Sawtooth Ridge Member (highest).

Vandenberg (1990) and Vandenberg & Stewart (1992) also without stratigraphic definition. Kaag (1991) defines the Ordovician units in an Honours thesis but remains unpublished. The author refers to this sequence simply as the Ordovician units due to the confusion of nomenclature.

Rifting in the medial Silurian produced the Wollondilly Basin, an extensional structure into which Late Silurian and Early Devonian sedimentary and volcanic sequences were deposited (Simpson, 1990). Interbedded fossiliferous limestone, shale, siltstone and sandstone constitute the Bungonia Group on the eastern edge of this basin. Conformably overlying the Bungonia Group is the Early Devonian Taungang Formation of shallow marine conglomerate, limestone, and shale interbedded with shallow marine and terrestrial volcanioclastic arenite, tuff and dacitic lava flows (Jones et al., 1984). This onset of silicic volcanism ended carbonate shelf sedimentation in the Bungonia area. These sequences were folded during the Early Devonian Bowning Orogeny, before the intrusion of the Marulan Batholith (Simpson, 1990).

Small outliers of Permian quartzarenite of marine origin unconformably overlie the Bungonia Group, and Tertiary fluviatile sediments provide a paucity over the Palaeozoic rocks.

Structure

Regionally the Late Ordovician and Late Silurian strata occupy two asymmetrical meridional synclines, reaching as far north as Wombeyan Caves and extending southwards to Windellama and Bendithera Caves (Carr et al., 1980). Only the eastern limbs are contained within the study area as shown by Figures 2, 3 & 4. One syncline, plunging 10° to 30° contains the Lockdown Limestone and Cardinal View Shale; the western limb is lost due to faulting. The second syncline gives the steep westerly dip to the members of the Frome Hill Formation. The two synclinal structures are separated by the Reevesdale Thrust Fault, as shown on the geological map and cross-sections.
Table 1. Summary of changing nomenclature for the Bungonia Group

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Lookdown Limestone</th>
<th>Cardinal View Shale</th>
<th>Folly Point Limestone Member</th>
<th>Efflux Siltstone Member</th>
<th>Sawtooth Ridge Limestone Member</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carne and Jones</td>
<td>1919</td>
<td>Eastern Belt</td>
<td></td>
<td>Bungonia Limestone Belt</td>
<td></td>
<td>Western Belt (blue belt)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(white belt)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swayne</td>
<td>1950</td>
<td>Lower Limestone</td>
<td>Silicicula Infraspinulata Slag</td>
<td>Upper Limestone Belt</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitman</td>
<td>1950</td>
<td>Grey Belt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coudic</td>
<td>1966</td>
<td>Lower Limestone</td>
<td>Upper Limestone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robinson</td>
<td>1972</td>
<td>Eastern Limestone</td>
<td>Unnamed Stage</td>
<td>Mount Front Series</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Counsell</td>
<td>1975</td>
<td>Lookdown Limestone</td>
<td>Cardinal View</td>
<td>Folly Point Limestone</td>
<td>Efflux Siltstone</td>
<td>Sawtooth Ridge Limestone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>State</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carr</td>
<td>1980</td>
<td>Lower Limestone</td>
<td>Lower Shale</td>
<td>Middle Limestone</td>
<td>Upper Shale</td>
<td>Upper Limestone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bauer</td>
<td>1993</td>
<td>Lookdown Limestone</td>
<td>Cardinal View</td>
<td>Folly Point Limestone</td>
<td>Efflux Siltstone</td>
<td>Sawtooth Ridge Limestone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>State</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stratigraphy

Previous geological investigations have been carried out by numerous workers, with many resultant changes to the stratigraphic terminology. A summary of the history of the nomenclature for the Bungonia Group is outlined in Table 1. To date formal names for the rock units in the study area remain as stated by Carne & Jones (1919). The paper herein raises the Bungonia Limestone of Carne & Jones (1919) to group status and closely follows terminology of Counsell's unpublished work of the early seventies. James & Montgomery (1976), Anon (1976) and James et al. (1978) have also followed Counsell's terminology.

The Bungonia Limestone consists of Lookdown Limestone, Cardinal View Shale and Frome Hill Formation. The Folly Point Limestone, Efflux Siltstone and Sawtooth Ridge Limestone are relegated to member status in the Frome Hill Formation. The stratigraphic nomenclature proposed in the paper will supersede all terminology previously published and eliminate the confusion over stratigraphy since 1919.

Other workers such as Robinson (1972) and James et al. (1978) have raised the question of units within the Bungonia Group being repeated by faulting. Palaeontological work by the author on the sequence has indicated that the units are separate entities as opposed to thrust-repeated blocks. Detailed analysis of the petrology indicates that these members are not three distinct units as Counsell suggested but are distinct, interfingering, mappable facies within one unit. A stratigraphic column is depicted in Figure 5.

Bungonia Group

An interbedded sequence of interbedded, fossiliferous, biostromal limestone, sandstone and shale up to 1235 metres in thickness.

Lookdown Limestone

The base of the Lookdown Limestone lies unconformably on the Ordoviciansequence. A late Ludlow age has been assigned by Moore (1976) to the Lookdown Limestone based on the presence of the conodonts Trichonodella symmertica and Spathognathodus inclinatus. A Ludlow age is also supported by corals and stromatoporoids (Pickett 1972). However this is not absolute (Wright & Bauer, in press).

With an average dip of 70° to 300', the Lookdown Limestone is the thickest carbonate unit (100-270 m) within the Bungonia Group and contains many of the large caves within the Bungonia Caves Reserve.
Geological Interpretation of the Bungonia Caves area, NSW

Legend

- Dolerite
- Targerang Formation
- Sawtooth Ridge Limestone Member
- Efflux Silstone Member
- Polly Point Limestone Member
- Cardinal View Shale
- Lockdown Limestone
- Ordovician

Figure 2. Geological interpretation of the Bungonia Caves area
The unit presents problems in interpretation of original sedimentary conditions as the limestone is strongly recrystallised with a very coarse texture. This is especially so in the north of the study area where the limestone is close to the Marulan Batholith. To the south, although recrystallised, minimal variation to original texture can be credited to the finer grain size of the limestone. Dolomitization has also masked or obliterated primary textures and is a problem throughout the entire unit but particularly in the south of the study area. In several areas dolomite replacement reaches 50% (Bauer, 1993).

The Lookdown Limestone is dominantly biomicrite and biomicrite, and rarely biosparite indicating a moderate to low energy depositional setting. Lithologies in the Lookdown Limestone not previously reported include primary dolomite, spiculite and quartz-rich anhydrite. These provide a valuable aid in environmental interpretation, indicating fluctuations in sea level. Primary dolomite is associated with organic-rich shale and micrite, rich in blue-green algae and lag deposits of crinoid debris. Blue-green algae are commonly restricted to tidal flat areas; as water levels rose crinoidal debris washed onto the tidal flats which eventually were resubmerged. Spiculite containing siliceous sponge spicules up to 2 mm long are indicative of a shallow water setting subjected to influxes of silica, possibly in the form of volcanic ash fall. Anhydrite now composed of 20% authigenic quartz and large anhydrite laths pseudomorphed by calcite overlie the spiculite indicating a transition from shallow marine environment to a supratidal regime. Both lithotypes crop out in Argyle Hole Cave (GR27144438) 64 m below the cave entrance and do not have surface expression (Bauer, 1993).

The Cardinal View Shale

The Cardinal View Shale is best exposed along haul roads in the Marulan South Limestone Quarry in the north of the study area. Although this location provides the best outcrop, the sections cannot be used as type sections as further quarrying will remove them. At this location (GR27144578) the top of the Lookdown Limestone is represented by a calcarenite with well formed asymmetrical ripple marks, interbedded with thin (5-10 cm) discontinuous lenses of siliceous mudstone rich in crinoid ossicles. The Lookdown Limestone is conformable with the fine, siliceous 170-400 m thick Cardinal View Shale.
Stratigraphic Column

The Cardinal View Shale is a Bouma sequence with several beds containing wave generated ripple marks indicating a shallow water turbidite sequence. The basal beds of the unit consists of very fine-grained shale, siltstone and sandstone. Individual beds are fining upwards in this overall coarsening upward sequence. Mass flow units up to 4 m in thickness occur within the unit; the lowest flow unit contains sandstone and shale clasts, probably derived from an Ordovician source. The next flow unit contains limestone clasts only, suggesting active tecionism such as uplift of the Lookdown Limestone or basin subsidence.

The middle of the Cardinal View Shale is marked by a 20 m thick pod of limestone previously referred to as the Main Gully limestone as it lies in close proximity to the topographic feature, Main Gully (Counsell, 1973). This biolithite contains encrusting forms of algae, stromatoporoids, bradyzoans and juvenile fossils. Mass flows recorded in the sequence above the Main Gully limestone contain well-rounded clasts, ranging in size from 1 mm to 20 cm in a matrix of silt and sand sized particles. The top of the Cardinal View Shale is dominated by coarsening-upward beds of fine to coarse sandstone containing cross-beds and scours. Clast size indicates a proximal facies in the north of the study area, while smaller clasts to the south of Bungonia Gorge represent a distal facies to the source.

Folly Point Limestone Member

The base of the unit in this area is mostly coincidental with the Beeslade Fault. The unit consists of fossiliferous limestone interbedded with well-sorted, medium-grained, fossiliferous sandstone. The average thickness is 65 to 300 cm; the unit thins to 25 m in the north of the study area from 225 m in the south. Of the limestone fraction, bimicrite and bimicrobialite are the dominant textural types; however, there is also a high occurrence of biopelletitite containing conoidal detritus. From north of Bungonia Gorge to Folly Point terrigenous detritus, mostly quartz, increases to 5% where the limestone is interbedded with calcareous sandstone and decreases south of Folly Point to be absent in the limestone at the base. West of Folly Point (75 m) a 1 m bed of black chert interbedded with laminated micrite indicates low energy conditions and the introduction of silica into the system. Thin section analysis revealed an early phase of recrystallisation of this unit, which was originally a lime mud. Although recrystallised, the fine texture allowed primary textures to be retained. The age of Folly Point Limestone Member is undetermined.

Efflux Siltstone Member

Conodonts from this unit by Jones et al. (1981) led to the assignment of a Lochkovian age; Gawthorn (1986) has queried the limited conodont data. The 0-170 m thick unit lenses out at or is faulted out at GRN 264 1450 and reappears on the northern side of Bungonia Gorge. Outcrops continue north for 425 m where the unit is terminated by faulting. South of GRN 259 0436 the Efflux Siltstone Member forms the top of the Bungonia Group as the Sawtooth Ridge Limestone Member lenses out.

In the northernmost outcrops the Efflux Siltstone Member is a medium-grained, well sorted, fossiliferous sandstone at its base grading to shale at the top of the unit. In the vicinity of Adams Lookout Road the unit is a fine white shale rich in crinoidal material. The sandstone and shale within the unit show lateral variation in grain size.
Sawtooth Ridge Limestone Member

This unit is a well laminated, micrite-rich limestone with up to 2% of detrital quartz. On Fomne Hill, the limestone is interbedded with mass flows which are topographically expressed as the prominent gullies in the vertical southern face of Fomne Hill. The lensoidal mass flow units contain coral, brachiopod and limestone clasts up to 3 cm in size. Angular quartz grains up to 2.5 mm are common, as are short fragments and ripped-up algal material.

The Sawtooth Ridge Limestone Member is less fossiliferous than the other carbonate units within the Bungonia Group. On Fomne Hill at GR26744577 the limestone is highly silicified, with some fossils being prominent in outcrop. A Cyrtina shell recovered from this unit indicates an Early Devonian age.

Fauna

Lookdown Limestone

The Lookdown Limestone has a rich, high diversity fauna compared to other units within the Bungonia Group. The fauna is dominated by two common tabulate corals, Favosites and Heliolitites. Corals in surface outcrop occur as small poorly preserved colonies or fragments; however, in subsurface outcrop large colonies are preserved. In Drum Cave the base of an in situ Tryplasma reaches a diameter of 60 cm, while a longitudinal section of the same genus lying in the bedding plane measured 80 cm in length. Other genera of coral subordinate to Favosites and Heliolitites include; Syringopora, Pachyoporidae, Proporopiidae, Pyconomus, Haddstromophyllum, and a new genus of Arachnophyllidae (Wright & Bauer, in press). Second in abundance to the corals are stromatoporoids, common frame-builders occurring in encrusting and bulbous forms. Brachiopods, particularly the pentamerid branchiophod Krikidium are present but poorly preserved.

Flying Fortress Cave exposed excellent vertical sections and the relationship between fauna and sediment type could be easily investigated. Carbonate with 30-35% lime mud supported a rich and diverse fauna, including stick bryozoans, corals, sponges and rhodophyta. The limestone in the main cave passage has been surficially silicified and etched fossils are left protruding. Large articulated, thick-shelled megalodont bivalves and septate gastropods (Cook, 1994) discovered here have not previously been reported. Ostracods preserved in the clay matrix within these bivalves include; Bairdia sp., Bairdiocrypts sp. (or Stenias sp.), Baschkirina sp. (or Pseudorayella sp.), Bulbosniella sp., Microhellinella sp. and “Longiscula” sp. cf. smithii (F. Jones, pers. comm.)

Cardinal View Shale & Main Gully Limestone

Disarticulated crinoid detritus were the only fossils recovered during the present study from the calcarenite fraction of the Cardinal View Shale. Fauna in the Main Gully Limestone include; in situ juvenile Favosites, encrusting stromatoporoids and stick bryozoans. Fragmental debris includes echinoderm, brachiopod, mollusc, coral and algal material, as well as sponge spicules up to 1 mm in size.

Folly Point Limestone Member

The carbonate fraction of the Folly Point Limestone Member is dominated by corals, stromatoporoids, stick bryozoans and coralline algae. The 0-65 m thick sandstone lens at Folly Point contained fenestellid bryozoans, calymenid trilobites and crinoids.

Efflux Siltstone Member

The Efflux Siltstone Member has a rich faunal assemblage. Trilobites and brachiopods are the most abundant and were collected from two localities on Fomne Hill (GR26554570) in the north and on “Carne” (GR25644351) in the south of the study area. Apoclymena? dominates the trilobite fauna from Fomne Hill; all specimens are disarticulated with the exception of one complete specimen from “Carne” where the species is no longer dominant. Other trilobite genera from the Fomne Hill locality include; Crotaloecephalus, Thysonopeltes, Harpida, Anaraspis and Scabrisculum at the “Carne” locality.

Of the brachiopods, Mesodavallina is dominant at the Fomne Hill locality but poorly represented in the south. Other brachiopods recorded from Fomne Hill include; Schellwienella, Nucleospita, Howellella, Gypidula, Isorthis, Resserella and Strispirifer. The brachiopod fauna from the “Carne” locality differs slightly and includes; Schellwienella, Isorthis, Spherophoea, Howellella, Nucleospita. A subordinate part of the fauna are Favosites, Fenestella, Pleurodictyum and Alveolites.

Sawtooth Ridge Limestone Member

Few fossils were recovered from this unit as preservation is poor. Corals are represented by Syringopora and less commonly by Favosites. On Fomne Hill where the limestone is highly silicified several Rhizopremium and a single silicified Cyrtina were recovered by etching with hydrochloric acid.

Summary

Biotroal limestone, shale and sandstone of Late Silurian age were deposited into the eastern margin of the Wollondilly Basin forming the Bungonia Group. The Lookdown Limestone forming the basal unit of the Bungonia Group is biotomal in character, deposited in quiet to moderate energy conditions. Towards the top of the unit the presence of small lenses of spiculite, impure anhydrite and primary dolomite indicate shallowing during a minor regression. Spiculite and anhydrite rich in authigenic quartz indicate silica entering the system, possibly as ashfall into these shallowing lagoons. Volcanism was common during the Late Silurian, as the extensive Deskin Volcanics which occur in the Canberra region (Henderson & Stuart, 1982) were deposited synchronously with the Lookdown Limestone.

During a regressive sea level phase, the carbonate sequence was subjected to influxes of clastic material which formed the Cardinal View Shale. Fine siltstone at the base of the unit represents a distal facies of a delta system. The medium to coarse-grained, ripple, cross-beded sandstone at the top of the Cardinal View Shale represents the submarine portion of a more proximal facies to this prograding delta system in which mass flows were common. Uplift of the Ordovician sequence along the basin margins provide the source of material found in the basal mass flow units within the Cardinal View Shale. The inclusion of limestone clasts in subsequent mass flow units suggests active tectonism such as uplift of the Lookdown Limestone or basin subsidence.

The overlying Fomne Hill Formation is separated from the underlying units by the Reevesdale Thrust Fault. Facies delineation and faunal community analysis has indicated that members of the Fomne Hill Formation are slightly deeper water facies than the Lookdown Limestone and Cardinal View Shale. Facies analysis has enabled the stratigraphy to be elucidated and allowed the Bungonia Limestone to be elevated to Group status. Carbonate deposition was terminated by widespread
voleanism leading to the deposition of the Tangerang Formation which conformably overlies the Bungonia Group.

Acknowledgments
Most of the fossils from the Efflux Siltstone Member are in collections made previously by Carr, Jones & Wright. The brachiopod and trilobite identifications have been supplied by Wright. I thank NPWS and the Carne property owner for allowing access and P. Williamson and A.J. Wright for their comments on the manuscript.

References
Appendix: Stratigraphic terminology

The following are formal definitions of the new stratigraphic units introduced in this paper.

Name of unit: Bungonia Group

Derivation of name

The group is named after the small township of Bungonia in the Southern Highlands of NSW (34.8°S, 150.0°E)

Type Section

None specified.

Lithology

The group consists of a conformable succession of fossiliferous limestone, siltstone, sandstone and shallow water turbidite shale.

Thickness

Total thickness is approximately 1235 metres.

Relationships and Boundary Criteria

The base lies unconformably on the multiply-deformed units of Ordovician age. The top of the group is conformably overlain by the Early Devonian Tangerang Formation.

Age and structure

The age of the base of the group is still somewhat unclear. Conodonts (Moore, 1976), corals and stromatoporoids (Pickett, 1972) indicate a Ludlow age. The top of the group is of Early Devonian age based on a single Cyrtina in the Sawtooth Ridge Limestone Member, and the underlying Efflux Siltstone Member has been assigned a Lochkovian age based on conodont data (Jones et al., 1981).

Name of unit: Cardinal View Shale

Derivation of name

The unit derives its name from Cardinal View (GR2704510), a vantage point above Bungonia Gorge, 140 m northwest of Bungonia Lookdown.

Type section

The unit is best exposed along haul roads in the South Marulan Limestone Quarry, MS1-GR27304630 to GR27204628, MS2-GR27614635 to GR27214631 and MS3-GR27274637 to GR27384640. MS1-3 correspond to measured sections in Bauer 1993. These outcrops are not regarded as type sections because of their non-permanent nature. The type locality is situated on Frome Hill GR26934590.

Lithology

The Cardinal View Shale is sequence of shale, siltstone, sandstone, conglomerate and limestone. The classic fraction of the unit is a Bouma sequence, the presence of wave generated ripple marks indicate a shallow water turbidite sequence. The carbonate lens within the Cardinal View Shale is a biolithite with characteristic juvenile frame builders in situ.

Thickness

The Cardinal View Shale ranges in thickness from 170-400 m. The unit is thickest in the vicinity of The Lookdown at GR27054505.

Relationships and boundary criteria

The base of the Cardinal View Shale has a conformable boundary with the underlying Lookdown Limestone and a faulted boundary with the overlying Folly Point Limestone Member. This faulted boundary is best seen below Folly Point at GR26524996.

Age and structure

The Cardinal View Shale is assigned a Late Ludlow age based on the presence of Monograptus bohemicus tenus (Moore, 1976). The Cardinal View Shale is folded into the core of a gently north plunging syncline.

Name of unit: Lookdown Limestone

Derivation of name

The Lookdown Limestone derives its name from the Bungonia Lookdown (GR27194503) perched on top of the 350 m high Troy Walls.

Type section

None specified; typical outcrops occur in Becks (Tanners) Gully (GR26974230), and Drum Cave doline (type locality; GR26854410). This unit is exposed in Bungonia Gorge but is strongly recrystallised in this area. Many subsurface outcrops provide excellent exposures but are not generally accessible and therefore have not been recommended here.

Lithology

The Lookdown Limestone is a fossiliferous, biostromal carbonate sequence. Limestone is dominantly biomericulite and biomicrite occurring with small lenses of primary dolomite, spiculite and quartz-rich anhydrite. Basalt dykes cut the unit but are best seen in subsurface outcrop.

Thickness

The unit ranges in thickness from 100-270 metres.
Name of unit: Frome Hill Formation

Derivation of name
The Frome Hill Formation derives its name from a prominent topographic feature on the northern side of Bungonia Gorge. The Frome Hill Formation contains the Folly Point Limestone Member, Efflux Siltstone Member and Sawtooth Ridge Limestone Member.

Type section
None specified.

Lithology
The formation consists of fossiliferous limestone, fossiliferous, calcareous sandstone, shale, mudstone and breccia.

Thickness
The formation ranges in thickness from 25-565 m.

Relationships and boundary criteria
The base of the Frome Hill Formation is a faulted boundary while the top of the formation is conformable with the overlying Tangerang Formation.

Age
The basal member within the formation is of undetermined age, the topmost member is assigned an Early Devonian age.

Name of unit: Efflux Siltstone Member

Derivation of name
The Efflux Siltstone Member derives its name from the area's permanent spring, the Efflux (B67; GR26574497) found below Folly Point.

Type section
None specified. Typical outcrops occur at GR26654670 (type locality), GR26584570 and GR26604565 which are conodont bearing.

Lithology
In the north of the study area the unit is a medium-grained, well sorted, fossiliferous sandstone at its base grading to shale at the top of the unit. In the vicinity of Adams Lookout Road (GR25494427) the unit is represented by a white mudstone rich in disarticulated crinoidal material.

Thickness
The Efflux Siltstone Member ranges in thickness from 0-170 m, the thickest section occurs in the south where the unit forms the top of the Bungonia Group.

Relationships and boundary criteria
The base of the unit is conformable with the Folly Point Limestone Member. North of GR25904396 the top of the unit is conformable with the overlying Sawtooth Ridge Limestone Member, south of this grid reference the Efflux Siltstone Member is conformably overlain by the Tangerang Formation. In the north (GR26804575) the Efflux Siltstone Member is terminated by faulting.

Age
A Lochkovian age has been assigned to the Efflux Siltstone Member based on the conodonts recovered from shaly carbonate nodules within the unit (Jones et al., 1981).

Name of unit: Folly Point Limestone Member

Derivation of name
The Folly Point Limestone Member derives its name from Folly Point, a truncated bluff overlooking Bretons Creek and Bungonia Gorge (GR26594497).

Type section
None specified. Typical outcrops occur in the vicinity of Folly Point between GR26534497 and type locality GR26624497.

Lithology
The member consists of fossiliferous limestone interbedded with well sorted, medium-grained, fossiliferous, calcareous sandstone. Biomericite and biomicrite are the dominant carbonate textural types, however in the Folly Point area biopartrude containing crinoidal detritus is also present. The biopartrude and associated lithotypes a representative of a marine barrier system.

Thickness
On the northern side of Bungonia Gorge the unit is only represented by limestone up to 25 m in thickness. To the south on the 'Carne' property the unit retains a uniform thickness of 225 m. The calcareous sandstone is lensoidal reaching a maximum thickness of 65 m at Folly Point.

Relationships and boundary criteria
The base of the unit is faulted against the underlying Cardinal View Shale. South of GR26804571 the unit has a conformable contact with the Efflux Siltstone Member, north of GR26874585 the unit has a conformable contact with the Sawtooth Ridge Limestone Member.

Name of unit: Sawtooth Ridge Limestone Member

Derivation of name
The Sawtooth Ridge Limestone Member derives its name from the long sharp ridge that runs below Adams Lookout north to Bungonia Creek. This ridge is also referred to as the Devils Staircase.

Type section
None specified. The best fossil bearing outcrops and type locality can be found at GR26704575.

Lithology
The unit is a well laminated micrite-rich limestone containing 1-2% terrigenous quartz. On Frome Hill the limestone is interbedded with mass flow units containing pebble sized coral, bryozoan and limestone clasts. Angular quartz grains up to 2.5 mm, chert clasts and ripped up algal crust material are also common. The mass flow beds are lensoidal and restricted to Frome Hill.
Thickness

The Sawtooth Ridge Limestone Member ranges in thickness from 0 m at GR25904396 to 170 m. The unit is thickest in Bungonia Gorge, thinning both north and south of this locality. To the north the continuity of the unit is disrupted by faulting. In the north of the study area the unit is uniformly 60 m in thickness.

Relationships and boundary criteria

Between Bungonia Gorge and GR25904396 the base of the Sawtooth Ridge Limestone Member forms a conformable contact with the Efflux Siltstone Member. In the Gorge itself it can be seen at depth to be in contact with the Folly Point Limestone Member. Between GR26824572 and GR26874584 where down faulting has occurred the base of the Sawtooth Ridge Limestone Member comes into contact with the Cardinal View Shale. North of GR26874584 the base of the unit forms a conformable contact with the Folly Point Limestone Member. The top of the Sawtooth Ridge Limestone Member is conformably overlain by the Tangerang Formation.

Age

Based on a single silicified Cystina shell an Early Devonian age is assigned to this unit. This is feasible as both the underlying and overlying units are Early Devonian (Jones et al., 1981; Simpson, 1990).

Address for correspondence: P.O. Box 115 Oak Flats N.S.W. 2529
Cavernicolous leeches in Papua New Guinea*
Virginia M. van der Lande

Abstract

At least two limestone caves in Papua New Guinea harbour the unique leech, Leiobdella jawarrensis, the only haemadipsid (land) leech known without cutaneous pigmentation. The species probably occurs in at least three other widely separated sites. The leeches feed on blood extracted from bats and swiftlets inhabiting the caves. Directions for preserving the leeches are given.

![Map of Papua New Guinea showing the location of leech caves studied.](image)

Figure 1. Papua New Guinea showing the location of leech caves studied.

Introduction

It has long been known that caves harbour leeches. Turquin (1984) recently reviewed the literature relating to the cave-dwelling leeches of the Palearctic; all belong to the family Erpobdellidae (jawless) and comprise species of *Dina, Haemopis, Trocheta* and *Erpobdella*. Of these, *D. absoloni* (Yugoslavia), *D. vignai* (Turkey) and *D. anoculata* (U.S.A.) are eyeless and without pigmentation.

An unpigmented cave leech (Annelida: Hirudinea) belonging to the family Haemadipsidae (jawless; land leeches) is among the troglobitic invertebrates which are unique to Papua New Guinea. It probably also occurs in Irian Jaya. However, biospeleological observations are minimal from this under-explored side of the island (see Brook, 1976, and annual issues of *Current Tides in Speleology*) although there have been some climbing (e.g. to Carstenz Mts; Boardman, 1982) and caving expeditions, such as those to the Upper Baliem Valley in 1992 following reconnaissance expeditions in 1985 (Bulletin of the Cave Research Association, 17, April 1990) and 1988.

But throughout the island, logistics are formidable since communications are poor and terrain is among the most difficult in the world. None of the great pre-World War II expeditions, which were mainly conducted in Dutch- and German-administered areas (Frodin & Gressitt, 1982), appear to have studied caves.

In Papua New Guinea, the Port Moresby speleologists discovered caves at Sogeri with an unpigmented haemadipsid leech which was subsequently identified as *Leiobdella jawarrensis* (Richardson, 1974) (Figure 1, site 1) (Ewers, 1974). Another cave near Goroka with unidentified leeches (Figure 1, site 3) was also found. A remote area in the Star Mountains near Tabulil, opened up by mining operations, provided a collection of some twenty cave invertebrates, including leeches, during the 1975 British New Guinea Speleological Expedition (Figure 1, site 4) (Brook, 1976). In 1989, Ok Tedi Mining

* Contribution no. 130 from the Christensen Research Institute, Madang
Cave faunas in Papua New Guinea

Many invertebrates lack skin pigmentation and have reduced or absent eyes, or other structural and behavioural features associated with a cavernicolous habitat (Holsinger, 1988). According to Grossi (1982), the Papua New Guinea cave fauna includes endemic arthropods (crustaceae, acari, phalangidae, diplopods, chilopods, insects - both larval and adult stages), as well as members of other arachnid groups, tenebrionid, molluscs and annelids (a polychaete and leeches) (Chapman, 1976, Smith, 1977). As yet, no troglobitic onychophorans (velvet worms) have been reported in New Guinea caves despite their occurrence in Jamaica, South Africa and New Zealand (Rubberg, 1985). This rare group is important in evolutionary and biogeographical studies, and rainforest forms are otherwise quite well represented in New Guinea (van der Lande, 1992); cavernicolous are to be expected.

L. jawarenensis occurs (Ewers, 1974) on the walls of limestone caves in rainforests near Sogeri (haemadipsids are typically non-aquatic). Ewers describes how a vespertilionid microchiropteran bat, *Miniopterus tristis* (= *M. propitrestis*; Peterson, 1981), acts as a temporary host, giving a photograph of a leech feeding from the wing of a resting bat. Smears of leech gut contents showed typical mammalian (non-nucleated) red blood corpuscles, as well as a trypanosome, *Trypanosoma auana* (Ewers, 1974), for which the leech acts as a vector.

In 1992, van der Lande visited a limestone cave in rainforest near Madag (Figure 1, site 2) where the cave leeches, identified as *L. jawarenensis*, appeared to also feed on swiftlets (probably *Collotisala sp*., from blood smear evidence (van der Lande, 1994).

L. jawarenensis (Richardson, 1974)

This distinctive leech occurs in the aphotic recesses of limestone caves where it is tightly adpressed to the walls above the water level by its two suckers (plate 2). When hungry, it attaches by the posterior sucker and dangles, pivoting energetically in an elongated, round-bodied state when approached by potential hosts (plate 3). The jaws cannot perforate intact human skin; indeed this leech does not feed from humans (Ewers, 1974; van der Lande, 1993), unlike land-leeches encountered in forests in New Guinea and the Indo-Malayan tropics.

Mature, living adults varied in length between 20 mm (contracted; plate 2) and 55 mm (extended; plate 3). *In situ* by torchlight, a leech looks bright pink or liver-coloured owing to the enlarged, blood-filled crop (see Figure 2 in van der Lande, 1994) and its own haemoglobin-containing circulatory system, which show through the transparent, pigment-free body wall. Other organ-systems such as the green-brown excretory tissue and opaque-white reproductive organs, are also recognisable. Five pairs of small, black-pigmented eyespots are conspicuous (plate 2).

L. jawarenensis is noticeably more soft-bodied than its terrestrial relatives and only slightly pimply when contracted, compared with forest-inhabiting species of New Guinea. Richardson (1974) and van der Lande (1994) give detailed accounts of its anatomy and biology. The leeches are probably dispersed as juveniles while attached to bats and swiftlets, and are distributed when their hosts fly between caves. However, no leeches have been reported among the ectoparasites of cave bats or swiftlets in the Ausro-Malayan subregion.

Like other leeches, they probably copulate in pairs and later form cocoons which perhaps adhere to the cave wall rather than the host with which the adult haemadipsids normally only have temporary contact (Ewers, 1974). From observations on the size variations of Sogeri individuals during April and November, it seems that
breeding is seasonal, with cocoons hatching around the latter months (Ewers, 1974). Two of the larger specimens from Og Cave obtained in August had a chitellum, the transient glanular cocoon-forming structure which only develops in the breeding season. However, the mode of distribution and life-history of *L. jawarensis* are speculative.

Caves in Papua New Guinea with *leiodella jawarensis* (Figure 1)

1. **Jawarere Cave near Musgrave, Segeri** (5°25'S: 147°29'E, alt. ±450 m (Ewers, 1974; Richardson, 1974); Type locality, Figure 1, site 1).

 The Port Moresby speleologists have explored many caves in New Guinea, including those at Segeri (*Papua New Guinea Cave Talk, April 1961*, p. 2), some 80 km north-east of Port Moresby. *Niugini Caver* 1 (3) gives details of access, a location map and a survey of the Jawarere cave, the type locality of the 1968 collection (Richardson, 1974); specimens collected by J. Barnaby in 1966 (Richardson, 1974) probably also originated from Segeri. Ewers writes (personal communication, 1993) that a guide familiar with the caves and a 4-wheel drive need to arranged at Segeri. There is a two hour trek; the wet season should be avoided. He describes how the bats left the caves after gunshots and speculate on how this could affect the leech population.

2. **Og Cave, Sein village, near Madang** (5°16'S: 145°42'E, alt. 40 m (van der Lande, 1993). Figure 1, site 2).

 T. Reardon (South Australian Museum) first noticed (1989) leeches in Og Cave, which lies in a relatively accessible area (Humphreys, Jebb & Awramik, 1992). Og Cave extends some 300 m into a limestone face and houses bats and swiftlets (*Collocalia* sp.), as well as invertebrates. The cave floor is rocky, with flowing water and the walls are wet and alkaline to pH paper. The chambers are up to 10 m in height but were not explored beyond the area with leeches. The leeches were accessible without special equipment.

 During a short visit in 1992 (van der Lande, 1993), eighteen leeches (only) were found in two clusters 3-4 m apart in the aphytic area, one in the vicinity of nests with *Collocalia* nestlings, and the other at a bat roost recognisable (M. Jebb) by characteristic claw marks on the walls. No leeches showed feeding behaviour, although this had been seen (M. Jebb) on previous visits. It was later found that all eighteen specimens had recently ingested blood.

 Crop blood from leeches near the swiftlets had nucleated erythrocytes, whereas that from leeches near the bat roost was typically (non-nucleated) mammalian. The species of bats inhabiting Og Cave, other than *Hipposideros cervinus* (T. Reardon) are unknown. According to lists in Christensen Research Institute Report No. 2 (1987), caves in the Madang area harbour the vespertilionid *Miniopterus medius*, but distribution maps in Flannery (1990) show no species of *Miniopterus* in the area. Ewers (1974) states that out of the ten bats listed for Segeri cave, only *M. medius* serves as host.

 The population size and density of leeches at Og were less than at Segeri, where Ewers (1974) found up to a dozen per square foot. A cursory inspection showed that other fauna included crickets, amblypgyds (a group related to spiders; plate 4), assorted spiders and isopods, none of which were unpigmented or eyeless. There were numerous volant swiftlets and at least two species of bat; this cave fauna deserves further study.

Caves with leeches of unknown identity

3. **Kaimono Cave, Chuvave. 70 km (road) west of Goroka (6°4'S: 145°4'E), alt. 1570-2900 m. Figure 1, site 3.**

 Cave Talk Talk February 1963 3 (1) describes Miocene limestone caves at Chuvave with a map and details of access. The fauna comprised "leeches, spiders, silverfish, crabs, worms, beetles, bats and swiftlets (possibly *C. esculenta*)." The leeches occurred in lower numbers than at Jawarere; the account implies that they were the same species, i.e. *L. jawarensis*, although the leech had not at that time been described by Richardson (1974).

4. **Caves in the vicinity of Tabulil, Star Mountains (Western Province)**

 Finim Tel (5°10'S: 141°19'E). Figure 1, site 4.

 Extensive caves in the Finim Tel plateau (20 km north-east of Tabulil) were explored by the 1975 British Speleological Expedition (Brook, 1976). "Smooth, pink leeches" were found in the Soata Inlet passage of the Selimun Term, a huge fossil phreatic trunk channel connected to numerous streams and passages. However, from Table 2 (Chapman, 1976) it appears that they
inhabited water, and are therefore unlikely to be haemadipsids. Bats (Dobsonia spp) and swiftlets, as well as varieties of invertebrates, were recorded, some of the latter displaying eyelessness and a lack of cutaneous pigmentation.

Pimpily-skinned terrestrial cavernicolous (leeches) were also found in Okemal Tim and Kabim Tim (Tim Valley) (Table 1; Chapman, 1976). By implication, it seems that these do not lack skin pigments. The account is unclear about their precise location; the vestibule of caves is a known habitat for haemadipsids (see Sawyer, 1986).

The "aquatic" habitat of the smooth, pink leeches is questionable since haemadipsids avoid water. Or perhaps there exists a second, unknown species of cavernicolous leech which is aquatic. Such a leech is likely to be an erpobellid, a group with aquatic members which includes, among other cave-dwelling forms, three troglobitic species if Dina (see above; also Richardson, 1974; Turquin, 1984; Sawyer, 1986). But there has been no response from Dr. Petar Beron (Bulgarian Academy of Science) who retained the Selminum Tim and Tim valley specimens which therefore, remained unidentified. Both records clearly need confirmation.

Caves at Lukivi (5°21'S: 141°11'E). Figure 1, site 5.

The caves 13 km south-west of Tabubil were studied in 1985; James et al. (1989) give locations and maps. Roosting bats (species?) were found in cave LV13 ("Leech Cave") and an adjacent passage. "Railway Tunnel" (photograph, plate 4 in James et al., 1989), in which rows of leeches hung from the roof "waiting for the bats to return with their blood meal". The leeches are not identified, but habitat and behaviour suggest a population of _L. jawarrensis_.

Preservation of leeches in the field

70% ethyl alcohol is a suitable general preservation, although some specimens should be preserved if possible in a formalin-based fixative, such as Bouin, for microscopy. Specimens should not be dropped into preservative without prior relaxation otherwise they die contracted and coiled, making dissection and identification difficult. Relaxation is carried out by adding, drop by drop, 70% alcohol to the water in which the leech is submerged until it fails to respond to gentle pressure (roughly half an hour). This fluid is removed and after removing any mucus, the leech is rearranged on a piece of absorbent (filter) paper in a flat-bottomed, lidded container (e.g. petri dish) so that it is straight and slightly stretched. More paper is laid over the specimen, and 70% alcohol is added gently, using an eye dropper. After hardening, the leech can be transferred to a data-labelled vial with fresh preservative.

Smears of crop blood must be prepared from living, anaesthetised animals; for staining, a standard technique employing Geimsa used by Ewers (1974) is suitable.

Discussion

Turquin (1984) and Sawyer (1986) mentioned other troglobitic leeches which include species of the macrophagous, freshwater-inhabiting, jawless erpobellid _Dina_; the latter are eyeless and lack cutaneous pigmentation. The possession of eyes by _L. jawarrensis_, albeit reduced, suggests a fundamental difference in biology. Perhaps this relates to a phase in the life-cycle when photo-reception is important, such as a dispersal stage when juveniles are transported via a bat or swiftlet host (adults _in situ_ did not react to torchlight; VNL, 1992). Eyes are irrelevant under aphotic conditions.

There is no data on bat movements between caves in Papua New Guinea. According to T. Reardon (personal communication, 1994), there have been no banding or population genetic studies on the movements of individual species. However, according to Flannery (1990), at least one species, _Miniopterus australis_, probably migrates seasonally. The role of bats (or swiftlets) in distributing leeches is therefore speculative, especially if the restricted distribution of the leeches compared with their hosts is considered.

Factors associated with breeding and/or dispersal might account for the rarity of caves harbouring leeches, unless they have an environmental requirement only satisfied in a minority of the caves which are otherwise acceptable to bats and swiftlets. Long-term studies of the bats and leeches inhabiting a particular cave system are needed.

Despite the uniform climate within caves, the observations (Ewers, 1974) on size variation in _L. jawarrensis_ suggests a seasonal breeding cycle. One can speculate as to whether this is controlled by hormones in the blood of their host, since the stable cave environment will buffer the leeches against external climatic and seasonal changes.

When inside the aphytic recesses of caves, this active sanguivore depends on non-visual sensory stimuli (air movement, smell and taste, temperature, touch, and
carbon dioxide concentration; Sawyer, 1986) to
recognise, and make quick contact with, a potential host
which may be stationary (Ewers, 1974) or in flight
(James et al., 1989). For aquatic and macrophagous
leeches which scavenge as well as predate, there will be
constantly-available sources of food which will be
detectable by similar sensory input. Sanguivores such as
L. jawarerensis, in common with other haemadipsids,
can probably endure month of starvation if their hosts
vacate the caves. Normally their food source (bat or
swiitlet blood) is more reliable than that of forest-
dwelling haemadipsids which may have to endure long
intervals between encounters with vertebrate hosts.

Caves on islands such as Ceram, which have extensive
limestone formations, may also harbour leeches. The
Naree cave systems in the Miocene kars, near the Nakanai
Mountains in eastern New Britain, have been well
explored but, as in many speleological expeditions,
biological observations are limited (Report of the U.K.
River Expedition, Papua New Guinea 1984-5: Royal
Geographical Society Report no. 1920) and only bats
(untified), and “hand-sized spider [sic] crabs with
walnut-sized bodies” which were almost transparent,
are mentioned. There are no biological observations for
the caves near Pogera, which were explored in 1982 (N.
Montgomery; Report no. 1517 at the Royal Geographical
Society).

That all the leech caves are in limestone is probably
incidental in that this formation can develop cavities
which are extensive enough to afford the stable physical
conditions required by their hosts, and thus the leeches
which parasitise them. Much of the limestone of New
Guinea is subject to exceptionally high rainfall and
therefore, erodes extensively. However, volcanic caves
inhabited by bats merit investigation.

Clearly, geographical barriers such as mountains, have
not prevented these highly specialised leeches from
colonising caves which are far apart and that vary in
altitude. Additional records of L. jawarerensis are to be
expected, especially from Irian Jaya. Speleology in the
New Guinea region continues to be an exciting, under-
studied subject.

Acknowledgments

My observations in Madang Province were generously
supported by a Christensen Research Institute
Fellowship. Permission to collect was granted by the
Institute of Papua New Guinea Studies and the Madang
Provincial Government, as well as by the landowners to
whom I extend my warm thanks. Dr. Matthew Jebs, the
then Director of CRI, greatly facilitated my stay with his
assiduous help and expert knowledge of local conditions.
David Martin (Speleological Research Council) located
mammalised issues of Papua New Guinea Cave Talk
Talk and Ngugi Caver, as well as helping with data and
rare literature. Photographs for plates 1 and 2 were
provided by Professor L. C. Harris.

References

Stoughton.

Res. Assoc. 3: 192 - 203.

Cave Res. Assoc. 3: 192 - 203.

Australian Museum; Robert Brown & Associates.

from an insectivorous bat, Miniopterus tristis, in
New Guinea, which may be transmitted by a leech.
J. Parasitol. 60: 172 - 178.

Exploration of New Guinea. In (ed. J. L. Gressitt)
Dr. W. Junk, The Hague.

Cave-dwelling Organisms. Am. Sci. 76: 147 -
153.

HUMPHREYS, W. F., JEBB, M. H. P. & AWRAMIK,
S. M. (1992). Freshwater Tufa dams in Madang
Province, Papua New Guinea. Ms unpublished,
awaiting revision.

JAMES, J. M., BONWICK, M., NIEUWENDYK, P.,
MARTIN, D. J., PAWCH, B., SLADE, M. B. &
van der LANDE, V. M. (1993). Onychophora in New
van der LANDE, V. M. (1994). Haemadipsid Leeches
of New Guinea: a review of their biology and a guide

RICHARDSON, L. R. (1974). Die Peripatopodidae
(Onychophora) Systematik, Ökologie, Chorologie
und Phylogenetische Aspekte. Zoologica, Stuttgart

JAMES & H. J. Dyson) Caves and Karst of the
Muller Range. ATEA 78/Speleological research
Council, Sydney pp. 121 - 129.

Address for correspondence:
Department of Life Sciences, University of
Nottingham, University Park, NOTTINGHAM, NG7
2RD, U. K.
Wee Jasper Caves
- second edition -

by J.N. Jennings

Reprints from HELICTITE, The Journal of Australian Cave Research, with additional material by Julia M. James and Andy P. Spate, edited by Julia M. James, D.J. Martin and B.R. Welch.

This 45 page book reprints the late J.N. Jennings' definitive papers on Dip, Punchbowl and Signature Caves including complete surveys of the caves. The papers are accompanied by specially written descriptions of Careys Cave and Dogleg Cave. The book is illustrated by series of black and white photographs.

The SRC is making a special offer of A$8.00 per copy (post paid) to Helictite subscribers. The price to non-subscribers is A$9.50.

Send order with payment to:

Speleological Research Council Ltd
PO Box 183, Broadway, NSW 2007
Australia
VERTICAL
- third edition

- Completely reviewed and updated.
- European and American vertical caving techniques.
- Techniques tested in the world's most demanding caves.
- Ten chapters cover everything today's caver needs to know in an easy to understand form.
- Expands the repertoire of the expert caver.
- An informed introduction for the first time vertical caver.
- 134 pages, 345 line diagrams, 42 B&W photos, 21 tables.
- Price A$29.50 each (includes packing and sea mail postage worldwide).

Available from -
Alan Warild
41 Northwood St, Newtown 2042
Australia

Speleological Research Council Ltd.
P.O. Box 183 Broadway, NSW 2007
Australia

...or any good caving supplier.
Information for Contributors

Scope

Contributors from all fields of study related to speleology will be considered for publication. Suitable field include Earth Sciences, Speleochemistry, Hydrology, Meteorology, Conservation, Biospeleology, History, Major Exploration (Expedition) Reports, Equipment and Techniques, Surveying and Cartography, Photography and Documentation. Comprehensive descriptive accounts of the exploration and morphology of individual caves will be welcomed, but simple trip reports and brief cave descriptions are not adequate. Papers overall should not exceed 20 printed pages in length. Contributors intending to write at greater length or requiring any advice on details of preparation are invited to correspond with the Editors. All manuscripts will be read by referees. Short “Letters to the Editor”, expressing a personal view or giving a preliminary report of interesting findings, are welcomed, and will be given preference for speedy publication.

Manuscripts

Submitted manuscripts should be in final form ready for publication. As proofs are not normally sent to authors particular care should be taken to check for typing errors. Manuscripts should be typed, double spaced, on one side of the paper. The title should be upper case bold and the author’s names should follow. A brief and explicit summary of the notable aspects of the paper, headed abstract, should precede the main text. Throughout the main text headings should be in upper case, centred and bold while subheadings should use lower case bold aligned with the left margin. Acknowledgements should be placed at the end of the text before the references, and the author’s addresses for correspondence should follow the references. Authors are requested to submit a copy of their manuscript on floppy disk as well as hard copy in the first instance. Disks may be 3 1/2” or 5 1/4” in either MSDOS or Macintosh format. If sending text as a word processing document (Microsoft Word etc.), please send a copy as text on the same disk.

References

References should be listed alphabetically at the end of the manuscript and cited in the text by the author’s name and the year of publication (e.g. “(Grey, 1988)” Where there is more than one reference to the same author in one year the letters a, b, c, etc. should be added. If there are more than two authors, they should all be named at the first citation and in the reference list, but the first name followed by et al. should be used in subsequent citations. References should be checked particularly carefully for accuracy. Journal titles should be abbreviated following the “World List of Scientific Periodicals”, which is available in most large libraries.

The following examples illustrate the style:

Illustrations

Figures and photographs should not duplicate information in tables or other material. Photographs should be clear black and white prints with sharp focus. The number of pages with photographs will be kept to a minimum. Where several photographs are to form one plate they should be mounted together on white card. Any lettering required on photographs should be applied with “Letraset”. Figures should be drawn in Indian ink on white card, heavy paper or tracing material and lettered using stencils or “Letraset” or supplied as Laser prints. Most computer drawn documents can also be handled if they are in Macintosh format. Please avoid using unusual fonts unless they are included with the diagram.

All illustrations should be drawn to fit a full page print area of 170 x 215 mm or 80 x 215 mm to fit single columns. They may be larger provided that these proportions are maintained, but allowance for reduction must be made when choosing letter sizes and line thickness. Diagrams for inclusion in the text must be drawn to a width of 80 mm.

Figures and plates should each be numbered consecutively and specifically referred to in the text. The numbers should be marked lightly in pencil on the margin or back of each illustration. Captions should be typed on a separate sheet.

Units

The S.I. system (Australian Standard AS 1000) should be used unless citing historical data, in which case the original units should be quoted and appropriately rounded metric equivalents added, “100 feet (30 m)”.

Offprints

Offprints of papers will be supplied after publication, at the author’s expense. The number required should be stated when submitting the manuscript.

Speleological Research Council Limited
A.C.N. 000 456 42
Contents

Siluro-Devonian Bungonia Group, Southern Highlands, NSW J.A. Bauer 25

Cavernicolous leeches in Papua New Guinea ... Virginia M. van der Lande 35